首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   12篇
  国内免费   2篇
测绘学   14篇
大气科学   28篇
地球物理   74篇
地质学   111篇
海洋学   28篇
天文学   40篇
综合类   2篇
自然地理   31篇
  2021年   2篇
  2020年   8篇
  2019年   3篇
  2018年   10篇
  2017年   13篇
  2016年   11篇
  2015年   6篇
  2014年   15篇
  2013年   24篇
  2012年   17篇
  2011年   13篇
  2010年   9篇
  2009年   13篇
  2008年   15篇
  2007年   18篇
  2006年   12篇
  2005年   12篇
  2004年   12篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1943年   1篇
排序方式: 共有328条查询结果,搜索用时 78 毫秒
321.
太阳辐射驱动气候变化的泥炭氧同位素证据   总被引:19,自引:3,他引:16  
已证明太阳辐射水平变化的历史可从树轮14 C含量变化的历史来认识 .所报道的 5 0 0 0a高分辨的泥炭植物纤维素氧同位素 (δ18O)气候代用记录所指示的气候变化对太阳辐射变化的响应关系 .结果表明 ,过去 5 0 0 0a中 34次急速的气候冷暖变化 ,以及气候变化的 86 ,1 0 1 ,1 1 0 ,1 2 7,1 32 ,1 40 ,1 5 5 ,2 0 7,2 45 ,31 1 ,82 0和 1 0 5 0a等周期 ,都与太阳辐射变化和太阳辐射变化的周期有比较好的一对一的响应 .因此 ,结果为数十年至百年尺度的太阳辐射变化驱动气候变化的假说提供了新的证据  相似文献   
322.
The medium shallow lake Grimnitzsee (maximum depth: 9.9 m; mean depth: 4.6 m; area: 7.7 · 106 m2) which is situated in the biosphere reserve “Schorfheide-Chorin” in northern Brandenburg (Germany) was studied in 1994 and 1995. A bathymetric map of Grimnitzsee is given for the first time. The lake is usually polymictic although in 1994 and 1995 relatively long summer stratification was observed due to very high global radiation input. Nutrient concentration, light climate, oxygen status, phytoplankton biomass and the species composition of littoral diatoms characterize the lake as eutrophic. Special features deducible from the lake's polymictic character were the multiple development of aerobic or anaerobic strata above the sediment, the fast recovery of silicon concentration in the water column after diatom sedimentation, the importance of resuspension for the success of planktonic diatom populations, and an only moderate correlation between chlorophyll a concentration and light attenuation as well as seston dry weight probably due to the influence of suspended particles.  相似文献   
323.
The Global Ozone Monitoring Experiment (GOME) onboard the ERS-2 satellite has been in operation since July 1995. The Norwegian ground-based total ozone network has played an important role both in the main validation during the commissioning phase and in the validation of upgraded versions of the analysis algorithms of the instrument. The ground-based network consists of various spectrometer types (Dobson, Brewer, UV filter instruments). The validation of the second algorithm version used until January 1998 reveals a very good agreement between GOME and ground-based data at solar zenith angles <60° and deviations of GOME total ozone data from ground-based data of up to ±60 DU (∼20%) at zenith angles ≥60°. The deviations strongly depend on the season of the year, being negative in summer and positive in winter/spring, The deviations furthermore show a considerable scattering (up to ±25 DU in monthly average values of 5° SZA intervals), even in close spatial and temporal coincidence with ground-based measurements, especially in the high Arctic. The deviations are also dependent on the viewing geometry/ground pixel size with an additional negative offset for the large pixels used in the backswath mode and at solar zenith angles ≥85°, compared to forward-swath pixels.  相似文献   
324.
Long‐term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, such as Central America, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information—to locally observed discharge—can be used to constrain model parameter uncertainty for ungauged catchments. Given the strong influence that climatic large‐scale processes exert on streamflow variability in the Central American region, we explored the use of climate variability knowledge as process constraints to constrain the simulated discharge uncertainty for a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty, we first rejected parameter relationships that disagreed with our understanding of the system. Then, based on this reduced parameter space, we applied the climate‐based process constraints at long‐term, inter‐annual, and intra‐annual timescales. In the first step, we reduced the initial number of parameters by 52%, and then, we further reduced the number of parameters by 3% with the climate constraints. Finally, we compared the climate‐based constraints with a constraint based on global maps of low‐flow statistics. This latter constraint proved to be more restrictive than those based on climate variability (further reducing the number of parameters by 66% compared with 3%). Even so, the climate‐based constraints rejected inconsistent model simulations that were not rejected by the low‐flow statistics constraint. When taken all together, the constraints produced constrained simulation uncertainty bands, and the median simulated discharge followed the observed time series to a similar level as an optimized model. All the constraints were found useful in constraining model uncertainty for an—assumed to be—ungauged basin. This shows that our method is promising for modelling long‐term flow data for ungauged catchments on the Pacific side of Central America and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.  相似文献   
325.
The storage capacity of reservoirs is gradually reduced due to sediment accumulation that causes changes in the area-storage capacity (ASC) curves.Establishing these curves and predicting their future change is an important issue for planners,designers and operators of dams.Many empirical and semiempirical approaches have been suggested for establishing and predicting the future changes for these curves.In this study four empirical and semi-empirical methods were evaluated and three of them were modified to be used for the prediction of changes in the ASC curves due to sedimentation,based on the existing sedimentation survey data for 11 reservoirs in the USK For evaluation,these approaches were reviewed and used to determine sedimentation depth and establishing the ASC curves for the Mosul dam reservoir (MDR),which is the biggest hydraulic structure on the River Tigris in northern Iraq.MDR started operating in 1986 with a storage capacity of 11.11 km3 and a water surface area 380 km2 at normal operation stage (330 m a.s.l.).The results obtained from these methods were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam.The evaluation results showed three methods had presented more accurate results for estimating water depth or sedimentation depth at dam site with percentage error about 1.06-3.30%.Whilst for establishing ASC curves,one method presented good agreement result with survey data.Furthermore,ASC and sedimentation depths at dam site of MDR for periods 50,75,100 and 125 years were estimated using the modified approaches and the area reduction method.The results of the modified methods provided reasonable agreement when compared with the area reduction method proposed by the U.S.Bureau of Reclamation and the agreement became better with an increase in time period.  相似文献   
326.
Natural hazards have the potential to trigger complex chains of events in technological installations leading to disastrous effects for the surrounding population and environment. The threat of climate change of worsening extreme weather events exacerbates the need for new models and novel methodologies able to capture the complexity of the natural-technological interaction in intuitive frameworks suitable for an interdisciplinary field such as that of risk analysis. This study proposes a novel approach for the quantification of risk exposure of nuclear facilities subject to extreme natural events. A Bayesian Network model, initially developed for the quantification of the risk of exposure from spent nuclear material stored in facilities subject to flooding hazards, is adapted and enhanced to include in the analysis the quantification of the uncertainty affecting the output due to the imprecision of data available and the aleatory nature of the variables involved. The model is applied to the analysis of the nuclear power station of Sizewell B in East Anglia (UK), through the use of a novel computational tool. The network proposed models the direct effect of extreme weather conditions on the facility along several time scenarios considering climate change predictions as well as the indirect effects of external hazards on the internal subsystems and the occurrence of human error. The main novelty of the study consists of the fully computational integration of Bayesian Networks with advanced Structural Reliability Methods, which allows to adequately represent both aleatory and epistemic aspects of the uncertainty affecting the input through the use of probabilistic models, intervals, imprecise random variables as well as probability bounds. The uncertainty affecting the output is quantified in order to attest the significance of the results and provide a complete and effective tool for risk-informed decision making.  相似文献   
327.
Sediment budgeting concepts serve as quantification tools to decipher the erosion and accumulation processes within a catchment and help to understand these relocation processes through time. While sediment budgets are widely used in geomorphological catchment-based studies, such quantification approaches are rarely applied in geoarchaeological studies. The case of Charlemagne's summit canal (also known as Fossa Carolina) and its erosional collapse provides an example for which we can use this geomorphological concept and understand the abandonment of the Carolingian construction site. The Fossa Carolina is one of the largest hydro-engineering projects in Medieval Europe. It is situated in Southern Franconia (48.9876°N, 10.9267°E; Bavaria, southern Germany) between the Altmühl and Swabian Rezat rivers. It should have bridged the Central European watershed and connected the Rhine–Main and Danube river systems. According to our dendrochronological analyses and historical sources, the excavation and construction of the Carolingian canal took place in AD 792 and 793. Contemporary written sources describe an intense backfill of excavated sediment in autumn AD 793. This short-term erosion event has been proposed as the principal reason for the collapse and abandonment of the hydro-engineering project. We use subsurface data (drillings, archaeological excavations, and direct-push sensing) and geospatial data (a LiDAR digital terrain model (DTM), a pre-modern DTM, and a 3D model of the Fossa Carolina] for the identification and sediment budgeting of the backfills. Dendrochronological findings and radiocarbon ages of macro remains within the backfills give clear evidence for the erosional collapse of the canal project during or directly after the construction period. Moreover, our quantification approach allows the detection of the major sedimentary collapse zone. The exceedance of the manpower tipping point may have caused the abandonment of the entire construction site. The spatial distribution of the dendrochronological results indicates a north–south direction of the early medieval construction progress. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
328.
Acoustic inversion in one-dimension gives impedance as a function of travel time. Inverting the reflection response is a linear problem. Recursive methods, from top to bottom or vice versa, are known and use a fundamental wave field that is computed from the reflection response. An integral over the solution to the Marchenko equation, on the other hand, retrieves the impedance at any vertical travel time instant. It is a non-recursive method, but requires the zero-frequency value of the reflection response. These methods use the same fundamental wave field in different ways. Combining the two methods leads to a non-recursive scheme that works with finite-frequency bandwidth. This can be used for target-oriented inversion. When a reflection response is available along a line over a horizontally layered medium, the thickness and wave velocity of any layer can be obtained together with the velocity of an adjacent layer and the density ratio of the two layers. Statistical analysis over 1000 noise realizations shows that the forward recursive method and the Marchenko-type method perform well on computed noisy data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号